Mathletics

$\stackrel{:}{6}$ (F) Student
 \square

Reading and Understanding Whole Numbers

Copyright © 2009 3P Learning. All rights reserved.
First edition printed 2009 in Australia.
A catalogue record for this book is available from 3P Learning Ltd.
ISBN 978-1-921860-76-8

Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise.
You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent.

Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource.

Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme.

Published 3P Learning Ltd
For more copies of this book, contact us at: www.3plearning.com/contact
Designed 3P Learning Ltd
Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein.

Series F - Reading and Understanding Whole Numbers

Contents

Topic 1 - Looking at whole numbers (pp. 1-8)
Date completed

- read and write numbers to 100000
- order numbers to 100000 \qquad
- represent and compare numbers \square
- it's holiday time! - apply \qquad
- the new place is right! - apply \qquad 11

Topic 2 - Place value of whole numbers (pp. 9-16)

- who am I? - solve \qquad / /

Topic 3 - Round and estimate (pp. 17-24)

Series Authors:
Rachel Flenley
Nicola Herringer

Looking at whole numbers - read and write numbers to 100000

We read and write numbers in the order that we say them.

Thousands	Hundreds	Tens	Ones
6	7	1	5
six thousand	$\underbrace{$ fifteen }$_{\text {seven hundred }}$.		

1 Express the following in numerals:
a four thousand three hundred sixty two \qquad
b three hundred twenty four \qquad
c eight thousand nine hundred three \qquad
d four thousand eight hundred forty one \qquad
e seven hundred three \qquad
f five thousand four hundred two \qquad

2 Write the following in words:
a 5816
b 915 \qquad
c 8466 \qquad
d 254 \qquad
e 7615
f 2598 \qquad
(3) Match the numerals with the words:

4639	six thousand seven hundred ninety
2709	one thousand three
8341	four thousand six hundred thirty nine
1003	two thousand seven hundred nine
6790	eight thousand three hundred forty one

Looking at whole numbers - read and write numbers to 100000

We read and write large numbers in groups of three.
4321
54321
We work from right to left and we put a gap between each group of numbers.

4 These numbers have been grouped incorrectly. Re-group the numbers and read the new numbers out loud to a partner. Ask them to check your grouping. Are you correct?
a 5678

b 6589
d 33333

c 85621

e 100000 \square f 45142

5 Convert the following abbreviations into numerals:

a $\$ 60 \mathrm{~K}$

The abbreviation K comes from the Greek word khilioi, and it means thousand. It is used in many job advertisements and in measurement. A salary of 70 K is $\$ 70$ 000, and 1000 grams is 1 kilogram. When else do we use the term kilo or K?
b 4000 metres

c $\$ 66 \mathrm{~K}$

d 3000 grams

6 Are the following statements true or false?

a $\$ 36 \mathrm{~K}=\$ 3600$	True / False
b Seventy four thousand three hundred two $=74320$	True / False
c Seventy four thousand thirty nine $=74039$	True / False
d $\$ 51 \mathrm{~K}=\$ 51000$	True / False
e Ninety nine thousand eight hundred five $=99805$	True / False
f Fifty one thousand sixty $=5560$	True / False

Looking at whole numbers - order numbers to 100000

When ordering numbers, we need to pay close attention to the position and value of each digit.
Which is the largest? $\quad 6093 \quad 3069 \quad 3960 \quad 6039$
(Circle the larger number:
a

b

c
17015 / 17150
d

e

g

h h 87158 / 87155

2 Insert > (greater than) or < (less than) to make each statement true.
a $6482 \square 661$
b $9452 \square$
9360
85105
d 1999 \square2009
e 1469

1649
f $\quad 75136$

73156
g

91504
h
7815

3 Arrange the following numbers in ascending order:

```
46 827, 68 457, 15 468, 25 015, 98 652, 12698
```

\qquad , \qquad , \qquad , \qquad , \qquad , \qquad

4 Arrange the following numbers in descending order:

$$
36 \text { 817, } 48 \text { 453, } 15 \text { 468, } 25 \text { 013, } 89 \text { 632, } 12898
$$

\qquad , \qquad , \qquad , \qquad , \qquad , \qquad

Looking at whole numbers - order numbers to 100000

5 Look at each set of numbers and list some that come in between. Write them in order.
a

37682
b

23692

25692

C 10420

80682

6 Write a number that is:
a More than 5678 \square b Close to 56018 \square
c A little less than 78931

d Almost double 4000

e Between 34612 and 38901

f Less than half of 88000

g Now write 2 more problems for a partner to answer:

7 Here are the heights of 5 students. Place them on the number line. Find your height and that of two partners and add these to the partial number line.

Sarah	174 cm
Huy	152 cm
Jack	148 cm
Emma	167 cm
Nikita	121 cm

Looking at whole numbers - represent and compare numbers

1 Use the following digits to make:

a The highest number

b The lowest odd number \square
c The lowest number

d The amount of money you would like to win \square
e The highest even number \square

3 Use the numbers you have made in Question 2 to make the statements true:
a

c
 is close to
 is about double

Looking at whole numbers - represent and compare numbers

4 This table shows the population of 10 regional centres. Use the information to answer the following questions:

Name	Population 1996	Population 2001
Rainsalot	92273	98981
Funkytown	59936	68715
Point Lonely	24945	45299
Dullsville	15906	24640
Nirvana	67701	68443
Dodgy Meadows	70324	79975
Braggersville	90382	95194
Letsgo	15906	11368
Notsoniceton	42848	44451
Mt Hero	21751	20525

a The population of the mystery place in 2001 is less than it was in 1996. It has decreased by approximately 1000 people. The place is \qquad .
b You have gone back in time to 1997. You live in a city that has a population of more than 55000 but less than 60000 . You live in \qquad .
c It is now 2001. You have decided to move to a larger centre. This centre has a 4 in the ones place and a zero in the thousands place. You move to \qquad .
d In 2001 you decided to go on a holiday. You only visited centres that had a population of between 40000 and 99000 . Which towns did you visit?
\qquad
\qquad
e Many regional centres showed growth between 1996 and 2001. List the ones that grew by more than 5000 residents.
\qquad
f Your family moved here in 1996 and since then, the population has nearly doubled. Where did you move to?

It's holiday time!

What to do

Your family has just won the dream trip of a lifetime! You have won an all expenses paid trip to 5 towns or cities of your choice. That's right, anywhere in the world with everything paid for.

Your job is to plan the trip, following these guidelines:

1 Your dad hates big cities so one place must have a population of 10000 or less.
2 Your mum wants to shop. Big time.
3 Your grandma has always wanted to see New York.
4 You get to choose the other two places.

Record your selections in the left column of the table below:

Place	Population

Use an atlas or the internet to help you research the population of your 5 towns or cities, then use the information to answer the following:
a Order your towns from smallest population to largest:
b Choose two of your destinations and write their populations in words:
\qquad
\qquad
c Find a way to divide your places into two numerical categories such as odd/even, smaller than 100 000/greater than 100 000. Get a partner to see if they can work out the rule that you have applied.

The new place is right!

Getting ready

The aim of this game is to order as many numbers on a game board as possible. You'll play the game in a group of 3 or 4 . You'll need a pencil and the game show boards below.

What to do

Oh no! She called 49 and I have nowhere to put it, l've got 48 in the top spot.

THINK

1 Decide who will be the game show host and who will be the contestants.
2 The host calls a number between the values specified at the top of the board. Start with Game 1.

3 Without showing the host, the contestants choose where they will put the number on their own board. The numbers must be placed in order going up from the lowest number. Once a number is placed, it cannot be moved.

4 The host calls another number. If the contestants can place it on their board, they do so.

5 After the host has called 8 numbers, the person with the most numbers on the board wins. They score a point.

6 Play 3 games. The person with the highest score after 3 games wins.
7 You can play again and choose your own number ranges. You will need to draw your own boards.

Place value of whole numbers - expanded notation

When we write numbers using expanded notation, we identify and name the value of each digit.

$$
4231=4000+200+30+1
$$

1 Express the numbers in expanded notation:
a 8246 \square
b 468 \square
c 761 \square
d 1645
\square
e 971

f 7385 \square
g 1978 \square

2 Express the expanded notation in numerals:
a $600+80+7=\square$
b $3000+700+40+5=\square$
c $800+30+4=$ \square
d $200+60+9=$ \square
e $2000+800+40+6=$
f $7000+900+20+5=\square$
g $200+40+5=$ \square
h $9000+800+30+2=$ \square

3 Answer the following questions.

a Tim says 4329 in expanded notation is written as $4000+3000+29$. Is he correct?
b Now he says that 5847 is written as $5000+800+40+7$. Is he correct this time?
c Look carefully at the number 8953 . Why don't we expand it as $8+9+5+3$?
d What is the point of a zero in the middle of 7049 ? It has no value so why not just leave it out?

Place value of whole numbers - expanded notation

4 Play expanded notation memory with a partner. Make a copy of this page, cut out the cards, mix them up and place them face down. Take turns turning over two cards at a time. Each time you make a match, you keep the set. The person with the most cards wins.

Place value of whole numbers - place value to 4 digits

The place or position of a digit in a number helps us understand its value.

2650

2 is worth 2000 or two thousands
6 is worth 600 or six hundreds
5 is worth 50 or five tens
0 is worth zero or no ones

1. Fill in the place value chart for each number. The first one has been done for you.

	Thousands	Hundreds	Tens	Ones
a	465		4	6
b	8972			
c	45			
d	798			
f				

2 Write the number shown on each abacus.
a

b

c

d

g

Place value of whole numbers - place value to 4 digits

(3) What is the value of the $\mathbf{5}$ in these numbers?
a 6157 \square
b 9544 \square
c 5749

d 4546 \square
e
785
\square
f 2359 \square
(4) Write the next 3 numbers in each sequence. The first sequence has been done for you.
a +100
b +1

\square
\square
\square

c +1000

d -100

Zero plays an important role in numbers. It tells us that the value of the column is nothing and holds the place of the other numbers.

I have $\$ 6$ 055. Without the zero I only have $\$ 655$!

5 Complete the cross number puzzle. Make sure you include the zeros in the right places.

Across

1. four thousand two hundred seven
2. seven thousand ninety four
3. two thousand five hundred sixty
4. one thousand forty seven
5. nine thousand forty three

Down

1. four thousand eighty six
2. seven hundred
3. two hundred four
4. seven thousand fifty
5. nine thousand two hundred seven
6. two thousand one hundred thirty
7. six thousand four hundred three
8. sixty

SERIES

Place value of whole numbers - place value to 6 digits

Look at the number 123456

1 is worth 100000 or one hundred thousand -
2 is worth 20000 or two ten thousands .
3 is worth 3000 or three thousands .
4 is worth 400 or four hundreds -
5 is worth 50 or five tens.
6 is worth 6 or six ones -
When we write large numbers we put a space after every three numbers. This is because our brains prefer small chunks of information. We chunk from right to left.

1 Write the number shown in each row of this place value chart. The first one has been done for you.

	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
45168		4	5	1	6	8
			5	4	9	4
	1	4	0	9	5	4
		2	5	5	1	2
			8	7	7	4
			3	0	4	1

2 Identify the value of the digit in bold. The first one has been done for you.
a 49157
9000
b 9544

c 85749

d 47849 \square e 12468

f 4688

g 134 \square h 94115

i 94913

3 True or False?
a In the number 67923 , the 7 has the value of 7000.
b In the number 89471 , the 8 has the value of 80000 .
c In the number 70532 , the zero holds the value of the thousands place.

Place value of whole numbers - place value to 6 digits

4 Use the clues to find the mystery numbers:

I have 5 digits.
Every digit is an odd number and every digit in the number is different.
The greatest digit is in the ones place and the smallest digit is in the ten thousands place.
Both the thousands digit and the tens digit are greater than the hundreds digit.
So far, I could be 2 numbers. I am the greater of these.

I am \qquad

I have 5 digits.
If you add a one to me I have 6 digits.
What number am I?

I am \qquad

I am \qquad
REMEMBER

I have 5 digits.
I have a 6 in the ten thousands place and my digit in the ones place is the smallest even number.
My middle digit is one more than the ones digit.
My thousands digit is double my ones digit and my tens digit is double my thousands digit.
What number am I ?

I am \qquad

Write a problem for a partner to solve:

Place value mastermind

In this game, the objective is to guess a secret 4 digit number. You play with a partner.

You'll need to rule up a page with headings like this:

Number Guess	Number of Correct Digits	Digits in the Correct Place
5738	2	1

What to do

1 Player 1 writes a secret 4 digit number on a scrap of paper.
2 Player 2 writes their guess in the Number Guess column.
3 Player 1 writes down how many correct digits there are, and how many are in the right column.

4 Player 2 uses that information for guess number 2.
5 The game continues until the secret number is revealed.
6 Swap roles.

What strategies can you use to reduce the number of guesses you need to make? If you reduced the number of digits in the number to 2 or 3 , does it make easier to guess?

Can you work out how many 2 digit number possibilities there are?
What about 3 digit number possibilities?

What to do

Use the clues and the hundreds chart to help you identify the secret number:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

The number is greater than 8 .
The number is less than 500 .
The number is not a multiple of 5 .
The number is a multiple of 6 .
The number is even.
Its tens digit is even and is double its ones digit.
The number is in the top half of the hundreds chart.
What is the number? \square

Which clues were not needed? Explain:

Round and estimate - round

Rounding makes big numbers easier to work with. We round up if the number is exactly halfway between the 10s or over the halfway mark. We round down if the number is under the halfway mark.

Rounding to the nearest 10

27 is over halfway between the 10 s, so it rounds up to 30 .

22 is under halfway between the 10 s, so it rounds down to 20 .

35 is exactly halfway between the 10 s, so it rounds up to 40 .

(1) Round the following numbers to the closest hundred. Find the halfway mark first.

b

\square

2 Round the following numbers to the closest hundred:
a 235

b 680

c 513

d 450

e 5164

f 3748

3 Round the following numbers to the closest thousand:
a 942

b 4964

c 2435

d 9350

e 5678

f 2845

4 To find the hidden fact, round the numbers in the clues below and insert the matching letters above the answers. The first clue has been done for you.

$\overline{500} \frac{}{200} \frac{}{40} \frac{}{50} \frac{}{900} \frac{}{100} \frac{}{1100} \quad \overline{1000} \frac{}{10}$
$\frac{3000}{3000} \frac{20}{900} \frac{2}{1000} \frac{S}{400}$

S	368	rounded to the nearest hundred	Q	43230	rounded to the nearest ten thousand
T	1234	rounded to the nearest thousand	P	69	rounded to the nearest ten
M	27	rounded to the nearest ten	N	1146	rounded to the nearest hundred
C	483	rounded to the nearest hundred	R	83	rounded to the nearest ten
I	43	rounded to the nearest ten	F	6726	rounded to the nearest thousand
D	932	rounded to the nearest hundred	H	199	rounded to the nearest hundred
O	7	rounded to the nearest ten	L	46	rounded to the nearest ten
E	59	rounded to the nearest hundred	A	27468	rounded to the nearest ten thousand
U	17	rounded to the nearest ten			

Round and estimate - estimate

We use estimating when we want an approximate answer to a calculation.
Rounding helps us do this. We round numbers so we can work with them more easily in our heads.
Look at $333+521$.
Rounded to the nearest 10, they are 330 and 520 .
$330+520=850$
Therefore $333+521$ is approximately 850 .
(1) Complete these steps to see why estimating is handy.
a Use the problem $57-38=\square$. Time how long it takes you or a partner to solve it mentally.
\qquad
b Now round the numbers to the nearest ten and time how long it takes to solve this problem.
\qquad
c Which problem is faster to solve? \qquad
d Can you think of an occasion you would use estimation? \qquad

2 Practise estimating with these problems. You can use the middle column to jot down your rounded number sentences or just do them in your head. If you want to add some tension to the activity, race against a partner.

Sentence	Rounded Sentence	Answer
$384+53$		
$22+69$		
$406-89$		
$379+203$		
$93-61$		
$609-498$		
$826+599$		
$221+11$		
$704+341$		
$47+996$		

Round and estimate - estimate

3 Round then estimate to find the best answer to these calculations. Circle the best answer:

a $72-48$	$=$	30	20	27
b $57+31$	$=$	90	15	30
c $126-37$	$=$	90	100	30
d $567-23=$	500	550	600	
e $899+47=$	850	950	900	
f $1215+134=$	1400	1300	1000	
g $6454+207=$	6000	8000	6700	

Use estimation to assess whether these statements might be true. Tick the ones you think are true and cross the ones you think are false.
a $568+311>1000$

b $27+58>70$

c $899-378<600$

d $571-22>500$

e $245+245>500$f $1005+790>2000$

5 Use estimation to answer these word problems:
a Sarah is saving money to go to the fair. In week 1 she saves $\$ 13$, in week 2 she saves $\$ 19$ and in week 3 she saves $\$ 29$. Estimate how much money she has at the end of week 3.

b The show bags that Sarah wants cost roughly $\$ 15$ each. If she wants to spend half her money on show bags, how many show bags can she buy?

c For lunch, Sarah wants a hot dog, french fries and 3 jam donuts (mmm ... healthy). She has budgeted $\$ 10$ for lunch. Look at the price list below and estimate whether she can buy what she wants and stay within her budget.

Menu	Price
Pie	$\$ 2.50$
Sausage roll	$\$ 2.00$
Hot dog	$\$ 3.80$
Jam donuts	3 for $\$ 2.00$
French fries	$\$ 3.00$
Hamburger	$\$ 6.50$

Round and estimate - calculations

When estimating, we always need to check that our answers are reasonable.
$\$ 23+\$ 59=\$ 1000$. Is this estimation reasonable?

(1) Are these estimations reasonable? Explain your thinking.

a Nicola wants a digital camera that costs $\$ 486$ and a memory stick that costs $\$ 46$. She estimates she will spend approximately $\$ 1000$ on both. Is this estimation reasonable?

b Shakeb says $91+33$ is close to 120 . Is this estimation sensible?

c Kylie is crazy about dolphins. She has 4889 pictures of them, 389 stuffed toys, and 481 figurines. She thinks she has about 6000 items altogether. Is this estimation reasonable?

d Sean made a list of the money he had spent on lunch over the week. He then estimated that he had spent $\$ 30$ over the week. Is this a reasonable estimate? \square

Mon $\$ 4.50$	Tues $\$ 5.65$	Wed $\$ 3.85$	Thurs $\$ 6.25$	Fri $\$ 7.70$

2 In these problems, work backwards from an estimated answer to find the possible starting points.
a Daniel bought 3 chocolate bars. He estimated the bars to cost $\$ 2, \$ 3$ and $\$ 1.50$. This would make the total estimated cost $\$ 6.50$. The actual cost was $\$ 6.75$. What could each of the chocolate bars have cost?
b Hung bought 3 books. He estimated their costs to be $\$ 5, \$ 9$ and $\$ 15$. This would make the total estimated cost $\$ 29$. The actual cost was $\$ 33$. What could each of the books have cost?
Find two possibilities.

Round and estimate - calculations

When we use a calculator, it is tempting to rely on it and to stop thinking.
Estimating helps us develop an idea of what the possible answer should be. If we make an error with the calculator, we then know to try again.

3 Estimate the answer to these problems. Get a partner to check the reasonableness of your estimations, then use a calculator to solve the problems. You can check the thinking of two students at once.

Breathe in ... breathe out ... breathe in ... breathe out...

4. How many breaths do you take in a day? Not exactly, an estimation will do. You'll need a clock with a second hand. You may also want to use a calculator. Ask a partner to help you keep track of how many breaths you take in a minute, then multiply as necessary.
a Use this table to help you organise your calculations.

Time Frame	Number of Breaths
per minute	
per hour	
per day	

b Can you take it further? How many breaths could you take in a week?
c What about in a year?

Solve these problems using your head, a calculator, a pen and paper. You may work with a partner.

What to do
a You have won $\$ 5487$ in a competition. The organisers
 have no coins and have to round off the amount so they can give you your winnings in notes. Would you rather they rounded to the nearest $\$ 10, \$ 100$ or $\$ 1000$? Why? How much money would you get in each case?
b I am now 156000 . I have been rounded to the nearest thousand. List at least 5 numbers I could have been.
c I am now 145200 after being rounded to the nearest hundred. List at least 5 numbers I could have been.
d I am 16000 . What two whole numbers can be multiplied together to make me? How many pairs of numbers can you come up with?

Shop till you drop

You and a partner will take turns going on 60 second shopping sprees. You'll need a copy of this page, a timer or a clock with a second hand, the items below and your best estimation skills. You may also want to use a calculator for checking.

What to do

1 Cut out the items below.
2 Decide who will be the first shopper and who will be the timer.
3 The timer states a spending limit between the values of $\$ 10$ and $\$ 50$.
4 The shopper then has 60 seconds to estimate what they can buy while staying under the limit. The shopper takes the items they want. It is okay to put things back. (If 60 seconds is too hard, make the time limit 2 minutes.)

5 After the time is up, all transactions stop. Add up the purchases, using a calculator if desired.

6 If the shopper has stayed under the limit, they get a point. If they go over the limit, they get nothing.

7 Swap roles. At the end of that round, the person who was closest to their shopping limit gets a bonus point.

Make up some more items for the shopping spree. Or challenge another team to a race.

Reading and Understanding Whole Numbers

SERIES

